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Ha siominy 6i0 knacuunoeo umosiproco nioxody, 6 Oauiti cmammi po3eisioacmovCsi Memoo 2eHepy68aHHs ma
OYIHKU Mecmis, 3aCHOBAHUL HA HeuimKOMY nioxooi. Lle npuzsooums 00 3a80aib, KL MOXCYMb Oymu UpiueHi 6
PAMKAax HeuimKkux peisiyitinux piersans. Kintvka npukiadis imocmpyoms Kopucmes maxkozo nioxooy.

KurouoBi crioBa: Teopist TECTiB, FeHEpYBaHHS Ta OI[IHKA TECTIB, HEUITKI PEIISIiHHI piBHSIHHSL.

B omauuue om xnaccuueckoz2o 6eposamnozo nooxood, 8 OaHHOU CMAmMbe paccmMampueaemcs Memoo 2eHepupo-
6AHUS U OYEHKU MeCTO8, OCHOBAHHBII HA HEYemKOM no0Xo0e. Dmo npueooum K 3a0ayam, Komopwvle Mozym Ovlins
pelensl 8 PAMKAX HeYemKux peisiyuOHHbIX ypagHenul. Heckonbko npumepos uuiiocmpupyiom noib3y makozo noo-

xo00a.

Kurouesbie crosa: TEOpHs TECTOB, TCHEPUPOBAHNUE U OILICHKA TECTOB, HCUCTKUC PCIAIMOHHBIC YPABHCHUA.

Unlike the classical probability-based approach we consider the ge-neration and evaluation of tests based on
a fuzzy approach. This leads to tasks which can be solved within the frame of fuzzy relational equations. Several ex-

amples illustrate the usefulness of our approach.

Keywords: test theory, generation and evaluation of tests, fuzzy relational equations.

Generation of Tests with Desired Properties

Tests are one of the powerful means in
modern educational systems [2]. The structure of a
test is determined by items which are characterized
by complexity, discrimination, correlation to the
test and so on. Items are usually collected into so-
called item banks that can be used for the
generation of different tests. The test has to be
designed from items that have desired
characteristics according to test specification. The
test examines the knowledge of a testee with
respect to some subject, the latter being
characterized by units of knowledge (UOK).
Obviously, each item can be interrelated with a set
of UOK.

One of the problems of test developers is the
generation of a test from the item bank that has
certain statistical characteristics (according to test
specification) as well as a desired unit of
knowledge (according to the subject that is
assessed). There may be situations when it is
necessary to design the tests from one subject but
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for different groups with different levels of
knowledge (Fig.1).

The problem of choosing items is complex,
because the bank of items may contain up to some
thousands objects that are collected at universities
or national centers of assessment. The scheme of
test generation is shown in Fig.2.

Formalization of the Task and Problem
Formulation

Let us consider an item bank containing N
items T ={I,1I,,...,I,} from some subject (e.g.,
mathematics). Moreover, we have M UOK
U={U,,U,.,...,U,} describing this subject (e.g.,
numbers, sets, functions, statistics, geometry,...).
Let R express the quantification of the relation
between the items and the UOK reflecting the
fitness of the items with respect to these units:
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The elements 7, may be from the unit interval
(i.e., R can be interpreted as fuzzy relation)
expressing the truth degree of the fitness.
Sometimes, however, it is useful to have the 7,

from a lattice, e.g. from set {0,1,...,S}. In this case

the matrix elements estimate the level of
correspondence of fitness. In what follows,
however, we assume the unit [0,1] as basis for
evaluation.
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f test generation

There are at least two problems to consider.
First, one has to find the underlying set of UOK
U" when the testee has performed his test 7* and
got the results as truth levels of answers with
respect to the items. Hence, we answer the
question which UOK does the testee know well.
This is the direct problem. Second, one may be
faced with the question how to choose the set of
items 7" from the item bank (i.e., the test) if we
want to test some subset U of UOK. It is clear
that we may get different tests which assess the
same set of UOK. This is called the inverse
problem.

The sets 7" and U" are supposed to be fuzzy
sets on their universes 7 and U. The memberships
are denoted by small letters and for simplicity we

)
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equate the fuzzy sets with their membership
vectors, i.e. T =(il*,...,i:,), U*=(ul*,...,u:,).

The direct problem solution

Let 77 ={i1*,i2*,...,iN*} is the result of the test

for some testee. Using relation R and T° we can
find the appropriate fuzzy set for the UOK
successfully handled by the testee by computing

U'=T"oR )
where "o" means the max-min composition law
for fuzzy relations and sets, i.e.

max min(i,f,rkj),je{l,...,M}. )

kefl,...,N}

Example 1. Let us consider a test in
mathematics containing of 10 items assessing the
following units of knowledge: u,- Algebra, u,-

Numbers and Expressions, u;- Equations and
Inequalities, u,- Functions, us- Combinatorial
Calculus and Probabilities, u,- Statistics, wu,-
Geometry, ug - Plane Geometry, u,- Stereometry.
Moreover, we have the relation R (obtained

u' =
;=

from experts) between items and units of
knowledge
1100 00O0O00O0
011 0100O0O00QO0
1 01 0010O00O0
0001 O0O0T1T1O0
R 000O0OO0OT1TO01 .
001 010O0TO0OQO0
0001 O0O0T1O01
001 10O0O0TO0TOQO0
110001000
0001 O01O0O0O0
Assume that the testee has obtained the
following result:
(7.3, ) = (1,0,1,1,0,0,0,1,0,0). Then

computation (2) yields U*=(1,1,11,0,1,1,1,0). It
means that the testee knows u, -u, and u,-ug, but
he does not know us and u,.

Now let the answers be evaluated from a 5-
degrees scale, e.g. from the set {0,0.25,0.5,0.75,1}
and suppose that the testee got the following result:
(il*,...,il*o) = =(0.75,0,0.75,1,0.25,0,025,0.5,0.25,0.25 ).
According to (2) we find
U*=(075,075,0751,0,0751,1,025). This means that the
testee does not know only us; and knows the

remaining units at different levels.
The Inverse Problem

The inverse problem consists in the
determination of 7" with known R, U" in (1). That
is we want to know which tests might have led to
the evaluation U". This task is much harder to
solve (in comparison to the direct problem) and we

)

may be faced with infinitely many solutions or no
solution at all. It is a classical problem in the
theory of fuzzy relation equations [3,5,7]. In the
case of solveability the maximal (in the sense of

fuzzy inclusion) solution ﬁz(ﬁ,...,ﬁv) is given by

E=RoU" . 3)
Where (RocU*) = min 7, au, , and the well-
ko1<jsm ¥ /

known a-operation (Goedel implication) is defined
as

{l for a<b,
aob=

b otherwise.

There may be, however, a large number of
minimal solutions [7] the calculation of which is
not trivial for larger NV (typical in test theory).

Example 2. Let us consider the test with 10
items and relation from Example 1. Now we want
to find the assessment of answers to items if we
are given the UOK by
U" = (0.75,0.75,0.75,1,0,0.75,1,1,0.25). We obtain
the maximal solution

= (0.75,0,0.75,1,0.25,0,0.25,0.75,0.75,0.75)
and the four minimal solutions

7™ = (0.75,0,0.75,1,0,0,0,0,0,0),
7™ = (0.75,0,0,1,0,0,0,0.75,0,0),
7" = (0,0,0.75,1,0,0,0,0,0.75,0),
7™ = (0,0,0,1,0,0,0,0.75,0.75,0).

Inverse Problems with Restrictions

Often the tester is not interested in the whole
solution set of (1), but solutions with special
properties are desired, as mentioned in Section 1.
We distinguish two approa-ches: individual and
global.

Individual Approach
In this case, we search at least one solution of
(1) with T individual restrictions on the member

values in each element /; leading to the following
task: Search 7 fulfilling
U'=T"oR
ITcT'cT, )
where T, T are fuzzy sets on T and "<" means the
inclusion of fuzzy sets.

This situ-ation occurs for example if we want
to get a solution 7° where certain items are
surpressed and other items are to be in the solution
set with high evaluation.

In practice one is often faced with the problem

to search for solutions with a special structure.
Suppose, one has to determine a test

T={I.1,,....1,} where item I, takes part with
probability p,, ie. T is characterized by a
probability distribution P. This restriction can be
transformed into a fuzzy set 7, using
corresponding methods [4,6]. Due to a certain
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ambiguity in the choice of the transformation
method and accounting that thep, may be
imprecise it seems to be more appropriate to
include 7, in bounds, i.e. T, <7, T, and we are
led to task (4). The following statement enables the
determination of a solution of (4) in an efficient
way.

Statement 1. Denote the solution set of (4) by
I Moreover let T=EnT with E=RoU" (see (3)).

Then T+ iff T .

The proof follows from [9] where a more
general situation is considered.

Example 3. Let U™ given as in Example 2.
Suppose, we are interested in item soluti-ons with
evaluations of at least 0.5 for items 1,1,,1,1,.
Items 1,,1,,1,, are irrelevant and items 1,1,/
should be excluded from consideration. This leads
the restrictions
7=(0.5,0,0,0.5,0,0,0,0.5,0.5,0),,
T7=(,1,0,1,0,0,1,1,1,1). One sees that
7=(0.75,0,0,1,0,0,0.25,0.75,0.75,0.75) fulfills the
restrictions and it is a solution, because
szi“ cT gﬁ .

Global Approach

It may be of interest to globally confine the
memberships of 7" to a given (crisp) sub-set
Qc[0,1]. This situation is typical when Boolean
solutions are desired (Q={0,1})or solutions where

the membership of each item i should be below a
level or above another one

(Q=[0,0]u[®,1] with 0<w<®<1). Formally this
means that we search a 7° with
U' =T oR, Q)
zj eQ forj=1,..,N.
For the analysis of (5) we apply results given
in [1]. Therefore define a function ¢, : [0,1]—[0,1]
by

®g(a)=sup b (6)
beQ
b<a
Remark 1.
a) For Q={0,1} (Boolean case) we obtain
(@)= 1 for a=1,
Pal®)= 0 otherwise.
b) For Q=[0,0]u[®,]] as above we have
aforaeQ,
¢q (@)= .
o otherwise.

A solution of (5) can be found by the
following

Statement 2. Denote the solution set of (5) by
V¥, and let Q be closed. Set T=g, (ﬁ) (ie. @,

applied elementwise). Then ¥, @ iff Te¥,,.

Example 4. Suppose U" to be like in Exam-
ple 2. We want to determine a solution with
evaluations not lower than 0.5. Otherwise we ex-
clude the item from further consideration. That is,
Q={0}U[0.5,1]. A solution fulfilling the
constraints is
7=(0.75,0,0.75,1,0,0,0,0.75,0.75,0.75) , and

obviously 7™ <7 F .
Conclusion

The proposed approach of analysis and the
formation of tests based on fuzzy relations opens
up prospects for the automation of test generation
based on the matrix elements of knowledge
regarding the relationship and bank of items.
Taking into account that in real test systems the
item bank may contain hundreds of items, the
problem of determining an optimal set of items is
important. However, the demand for exact solv-
ability may be too restrictive (i.e. I' or Q may be
empty). Then one might search for approximative
solutions (e.g. by transforming U" into an interval-
valued fuzzy set, see [8]). This will be the topic of
future research.
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MODELING A BOILING PROCESS UNDER UNCERTAINTIES
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Tennoobmin y npoyeci KUniHHI 3a1exicums 6i0 Yinol HU3KU YUHHUKIE (cmadii KuninHs, QisuuHux ma ceomempu-
YHUX napamempis, 3MIHHUX Cany | yMoeu oomikants). Bci eapianmu 3acHO8aHI HA eMNIPUYHUX CNIBBIOHOULCHHSIX,
OMPUMAHUX HA 0a3i eKCNePUMEHMANbHUX OAHUX, OCKLIbKU 00CI GIOCYMHS Y3A2albHeHA Meopisi MeMnioooMiny. I3
s0ibuennam nepeepigy cminu (Tw-Ts) eunapogysants 3sMIHIOEMbCSL 6i0 KOHBEKMUBHO20 KUNIHHSL 00 SI0epPHO20, d
giomax — 00 film-xuninns. [ po3paxyuky xoeghiyienma meniogiooaui KOJCHO20 Muny KUNiHHs ICHYIOMb OKpemi
pisHanns. Icnye moocaueocmi 6paxosyeamu HeGUHAYEHICMb 6 OUHAMIYHOMY MOOEMO8aHHI Kuninus. /[ yboeo
6yna pospooaena newimka modenv muny Taxaei-CyeeHo, sKa MiCmums HewimKi nepexoou Midc Cmadisimu KUNIHHI.

Kitro4oRi citoBa: mporiec KUIiHHSA, TEII0O0OMiH, TUHAMIYHE MOJCTIOBAaHHS KHITIHHS, HEYiTKa Mojaeib Takari-
CyreHo.

Tennoobmen npu KuneHuu 3agucum om yeio2o psoa Qakmopos (cmaouu KUneHus, GU3ui4eckux u 2eomempi-
YeCKUX Napamempos, NEPeMeHHbIX COCMOSIHUS U YCI08Us 06meKanus). Bece eapuanmol 0CHO8AHbL HA IMIEPULECKUX
IKCNEPUMEHMATbHBIX OAHHBIX, MAK KAK 00 cux nop omcymcmeyem obwas meopusi mennooomena. C yeenuuenuem
nepeepesa cmenvt (Tw-Ts) ucnapenue usmeHsiemcst om KOHEEKMUBHO20 KUNEHUsl 00 10epHo20, a 3amem 00 film-
Kunenust. J{na pacuema kodghguyuenma menioomoayu Kaxcoo2o muna KUNEHUus Cyuecmayiom omaoebHbie ypasHe-
Hust. Cyujecmeyem 603MONCHOCIb YUUMbIEAMb CYUEeCMBYIOUYI0 HeONpeOeleHHOCHb 6 OUHAMUYECKOM MOOeIUPO6a-
Huu kunenus. B ceészu ¢ smum Oviia pazpabomana nevemxas mooeiv muna Taxaeu-Cyeeno, ekmouarouas 6 ce6s
Heuemkue nepexoobl Meicoy CmaousmMy KUREHUs.

KiroueBrsie ci1oBa: IpoIEece KUMEHUS, TEMI000MEH, THHAMUYECKOE MOAETMPOBAHUS KUIICHUS, HEUYETKass MO-
nens Takaru-CyreHo.

The heat transfer during boiling depends on a variety of factors (boiling stage, material parameters,
geometrical parameters, state variables and flow conditions). All variations are based on empirical relationships
gained from experimental data because there is still no comprehensive theory. With increasing wall superheat
(Tw-Ts), the evaporation changes from convective boiling to nucleate boiling and then to film boiling. For each type
of boiling, separate equations for the calculation of the heat transfer coefficient do exist. This paper presents
possibilities to take account of the existing uncertainties in the dynamic simulation of boiling. For this reason a

Takagi-Sugeno-fuzzy-model was developed which includes the fuzzy transitions between the boiling stages.
Key words: the process of boiling, heat transfer, dynamic simulation of boiling, fuzzy model of Takagi

Sugeno.

Introduction. Steam production is the basic
process for the generation of electrical energy in
nuclear or coal power plants. By means of the
flow type, the boiling process can be distinguished
between pool boiling and flow boiling. Pool
boiling occurs in free flow. In a forced flow the
evaporation process is called flow boiling.
Undercooled boiling is not investigated. The
medium has reached its saturation temperature.

The boiling process can be subdivided in three
stable stages:

— convective boiling,

— nucleate boiling

— and critical boiling states (film boiling or
dryout of the heated surfaces).

The transitions between the boiling stages are
not sharp and they are determined by the wall
superheat AT. The wall superheat is the difference
between the wall temperature Ty and the
saturation temperature of the fluid Ts. The
saturation temperature remains constant in the
boiling process. The heat transfer is determined by
the heat transfer coefficient . The correlations are
shown in the following figure. The abscissa is the
logarithmic temperature difference (Tw-Ts) and the
ordinate shows the heat flux density.

136 )

The boiling process begins with convective
boiling. The wall temperature is only a few Kelvin
above the saturation temperature. No or only very
few bubbles are formed. The increase of the wall
temperature increases the bubble formation and the
convective boiling changes over to nucleate
boiling. Point A marks the onset of nucleate
boiling, ONB [1].

The bubbles form on cavities or scratches on
the surface containing pre-existing gas/vapor
nuclei. The rising bubbles mix the fluid and thus
improve the heat transfer. This is demonstrated by
the growing increase of the heat transfer
coefficient. Further increase of the heat supply
causes also an increase in bubble formation and the
flow of fluid to the wall is lower. At a maximum
heat flux density (point C, called the critical heat
flux CHF) forms a closed vapor film restraining
the heat transfer. This means that the transferred
heat flow decreases, then reaches a minimum
(Leidenfrost point) and increases. This behavior is
achieved by setting the wall temperature. The
evaporation process in nuclear or coal power plants
is setting the heat flow. This means that due to the
suddenly worsened heat transfer, the wall

-
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Figure 1 — Explanation of the boiling stages based on the boiling curve of Nukiyama

temperature increases drastically (dashed line from
CtoE) [2].

Mathematical description of the boiling
process. The describing variable for the modeling
of the heat transfer is the heat transfer coefficient
o. For each boiling stage many formulas do exist
which mostly are based on experimental data.
Besides viscosity, thermal conductivity, density,
thermal expansion coefficient and geometrical
parameters the heat transfer depends on many
influencing factors. During heat transfer with
phase change, the number of variables is extended
by enthalpy of vaporization, saturation
temperature, vapor density and surface tension.
Microstructure and material of the heating surface
are relevant as well. The multitude of influencing
factors and their complex interaction are the cause
that no comprehensive theory could be developed
yet. Thus, all mathematical calculations are based
on empirical or semi-empirical relations [2].

Convective boiling

The calculation of the heat transfer coefficient
o is based on the equations for forced convective
heat transfer [2].

Nucleate boiling

The heat transfer coefficient for nucleate
boiling is described by empirical models. The
equation refers to a standard state with o, and gy
and considers the relative effects of wall roughness
Cw, the boiling pressure by F(p*) and n and the
pipe diameter [2].

Critical boiling states

Film boiling

The heat transfer coefficient for film boiling is
composed of the heat transfer coefficient oy and

os. The heat transfer coefficient oy is determined
by the heat conduction process through the vapor
layer and o5 through the heat radiation process [2].
The explicit equation of Bromley's proximity for
the technical area of interest is defined in [4].

Dryout

The calculation of the heat transfer coefficient
o is based on the equations for forced convective
heat transfer [2].

Takagi-Sugeno-Fuzzy-Model. To model the
fuzzy transition between the boiling stages, a
Takagi-Sugeno fuzzy model is suitable. The
height of the wall superheat is the decision
criterion, which boiling stage is present. For this
reason it is fuzzified and AT is defined as a
linguistic variable (Figure 2), which consists of
three membership functions "small", "medium"
and "large". Convective boiling is definitely given
if the wall superheat is located between 0 K and 7
K ("small"), we speak of nucleate boiling , when
AT is between 20 K and 35 K ("medium") and
critical boiling states starts at a high temperature of
100K ("large"). The transition regions are
modelled linearly. The data were taken from
Figure 1. The decision which mechanism works of
the critical boiling states is based on the critical
vapor content. If the vapor content x is low, then it
is film boiling, is it “high” then works the heat
transfer mechanism dryout of the heating surface.

The following rule base is derived:
If AT = "small" then o = convective boiling
If AT=“medium" then o = nucleate boiling
If AT = "large" and x = “low”

then a = film boiling
If AT = "large" and x = “high”

then a = film boiling

(1)
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Figure 2 — Linguistic variable "wall superheat AT' and “vapor mass fraction x”

Subsequently, the accumulation is performed
to determine the resulting heat-transfer coefficient.

Modeling a boiling process. To illustrate the
methods / procedures developed, the following
boiling process is applied (Figure 3). In an
electrically heated thin-walled pipe is saturated
water supplied and vaporized over the pipe length.
The dynamic behavior is described by following
simplified non-linear differential equation system
(Assumption: the pressure is constant).

/l M., hs

LT

ARRRRRRARY

LT
i

¥ T FF

e =
Pe, r'\';'Ilu:- he

_De, Do — Inlet- outlet pressure;
M., M, — Inlet- outlet mass flow;
h., h, — Inlet- outlet enthalpy;
my — Pipe mass;
cw — Heat capacity of pipe wall;
m — Mass of the medium;
Tw— Wall temperature;

Qs1 — Electrical heat flux

Figure 3 — Model for describing a boiling
process

Heat balance medium:

oq oq\dh, . -
vaveh Aoy, LN\ oy =
(q’” <on ahj dt e tm
=M, hyta ATy -Ty ). @

Heat balance pipe:

dT;
mW-cW-TZVzQei—a-A-(TW —TMm). 3)

The realization of the model equations is
carried out with a computer algebra system. The
heat flux density is given. After 10 seconds the
heat flux density increases (Figure 4, left). At the
beginning of the simulation, the fluid temperature
is already at saturation temperature. This value
remains constant throughout the boiling process.
The simulation starts with the state of convective
boiling. The heat transfer coefficient is low. For
the first 10 seconds a steady state appears. The
wall temperature is a few Kelvin above the
saturation temperature.

With increasing heat flux density the wall
temperature rises. Due to the low heat transfer
coefficient, the wall temperature initially rises
steeply. With the onset of bubble production the
water is getting mixed and the heat transfer
improves. This means that the heat transfer
coefficient increases and the wall temperature rises
slower despite constantly increasing heat supply.
The heat transfer to the water improves until the
critical point is reached, so that the bubbles form a
closed vapor film. The steam has considerably
poorer heat transfer properties. That means for a
given heat flux density, that the wall temperature
(Figure 5) changes almost in a jump-like way and
the process switches to stable film boiling. In right
Figure 4 shows the heat flux over the wall
superheat. When the critical heat flux is reached,
then the wall superheat rises steeply.

Summary and Outlook

The article presents a possibility to take
account of an aspect of model uncertainty. In a first
step, the heat transfer coefficient for the dynamic
simulation of boiling process is realized with a
Takagi-Sugeno-fuzzy-model and integrated into
the differential equation system. The dynamic
simulation of the process example represents the
process behavior realistically.

To extend the model, the parameter
uncertainties for the major variables (e.g. pressure,
temperature) are considered as fuzzy and in the
simulation.
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Figure 5 — Temporal course of the prescribed heat flux (left) and qualitative trend of the heat flux
over the wall superheat T (right)
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Figure 5 — Qualitative temporal course of the wall temperature, left) overview right) zoomed
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