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Generation of Tests with Desired Properties 
 
Tests are one of the powerful means in 

modern educational systems [2]. The structure of a 
test is determined by items which are characterized 
by complexity, discrimination, correlation to the 
test and so on. Items are usually collected into so-
called item banks that can be used for the 
generation of different tests. The test has to be 
designed from items that have desired 
characteristics according to test specification. The 
test examines the knowledge of a testee with 
respect to some subject, the latter being 
characterized by units of knowledge (UOK). 
Obviously, each item can be interrelated with a set 
of UOK.  

One of the problems of test developers is the 
generation of a test from the item bank that has 
certain statistical characteristics (according to test 
specification) as well as a desired unit of 
knowledge (according to the subject that is 
assessed). There may be situations when it is 
necessary to design the tests from one subject but 

for different groups with different levels of 
knowledge (Fig.1). 

The problem of choosing items is complex, 
because the bank of items may contain up to some 
thousands objects that are collected at universities 
or national centers of assessment. The scheme of 
test generation is shown in Fig.2. 

 
Formalization of the Task and Problem 

Formulation 
 
Let us consider an item bank containing N 

items  1 2, , , NT I I I   from some subject (e.g., 
mathematics). Moreover, we have M UOK 

 1 2, , , MU U U U   describing this subject (e.g., 
numbers, sets, functions, statistics, geometry,…). 
Let R express the quantification of the relation 
between the items and the UOK reflecting the 
fitness of the items with respect to these units:  
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На відміну від класичного ймовірного підходу, в даній статті розглядається метод генерування та 
оцінки тестів, заснований на нечіткому підході. Це призводить до завдань, які можуть бути вирішені в 
рамках нечітких реляційних рівнянь. Кілька прикладів ілюструють користь такого підходу. 

Ключові слова: теорія тестів, генерування та оцінка тестів, нечіткі реляційні рівняння. 
 
В отличие от классического вероятного подхода, в данной статье рассматривается метод генериро-

вания и оценки тестов, основанный на нечетком подходе. Это приводит к задачам, которые могут быть 
решены в рамках нечетких реляционных уравнений. Несколько примеров иллюстрируют пользу такого под-
хода. 

Ключевые слова:  теория тестов, генерирование и оценка тестов, нечеткие реляционные уравнения. 
 
Unlike the classical probability-based approach we consider the ge-neration and evaluation of tests based on 

a fuzzy approach. This leads to tasks which can be solved within the frame of fuzzy relational equations. Several ex-
amples illustrate the usefulness of our approach. 
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The elements ijr  may be from the unit interval 
(i.e., R can be interpreted as fuzzy relation) 
expressing the truth degree of the fitness. 
Sometimes, however, it is useful to have the ijr  
from a lattice, e.g. from set  0,1, , S . In this case 
the matrix elements estimate the level of 
correspondence of fitness. In what follows, 
however, we assume the unit [0,1] as basis for 
evaluation. 

There are at least two problems to consider. 
First, one has to find the underlying set of UOK 

*U  when the testee has performed his test *T  and 
got the results as truth levels of answers with 
respect to the items. Hence, we answer the 
question which UOK does the testee know well. 
This is the direct problem. Second, one may be 
faced with the question how to choose the set of 
items *T  from the item bank (i.e., the test) if we 
want to test some subset *U  of UOK. It is clear 
that we may get different tests which assess the 
same set of UOK. This is called the inverse 
problem. 

The sets *T  and *U  are supposed to be fuzzy 
sets on their universes T and U. The memberships 
are denoted by small letters and for simplicity we 

 
Fig. 1. Working with item bank 

 

 
Fig. 2. Procedure of test generation 
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equate the fuzzy sets with their membership 
vectors, i.e.  * * *

1 ,..., NT i i ,  * * *
1 ,..., NU u u . 

 
The direct problem solution 
 
Let  * * * *

1 2, , , NT i i i  is the result of the test 
for some testee. Using relation R and *T  we can 
find the appropriate fuzzy set for the UOK 
successfully handled by the testee by computing 

* *U T R                           (1) 
where "  " means the max-min composition law 
for fuzzy relations and sets, i.e. 

 
   

1, ,
max min , , 1, ,j k k jk N

u i r j M 


 


 .   (2) 

Example 1. Let us consider a test in 
mathematics containing of 10 items assessing the 
following units of knowledge: 1u - Algebra, 2u - 
Numbers and Expressions, 3u - Equations and 
Inequalities, 4u - Functions, 5u - Combinatorial 
Calculus and Probabilities, 6u - Statistics, 7u - 
Geometry, 8u - Plane Geometry, 9u - Stereometry. 

Moreover, we have the relation R (obtained 
from experts) between items and units of 
knowledge 

1 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 1
0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 1 0 1
0 0 1 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0

R

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Assume that the testee has obtained the 
following result: 
 1 2 10, , ,i i i    (1,0,1,1,0,0,0,1,0,0). Then 
computation (2) yields  * 1,1,1,1,0,1,1,1,0 .U   It 
means that the testee knows 1u - 4u  and 6u - 8u , but 
he does not know 5u  and 9u . 

Now let the answers be evaluated from a 5-
degrees scale, e.g. from the set  0,0.25,0.5,0.75,1  
and suppose that the testee got the following result: 
 * *

1 10,...,i i   0.75, 0, 0.75,1, 0.25, 0, 0.25, 0.5, 0.25, 0.25 .
 According to (2) we find 

 0.75,0.75,0.75,1,0,0.75,1,1,0.25* .U   This means that the 
testee does not know only 5u  and knows the 
remaining units at different levels.

 The Inverse Problem 
 
The inverse problem consists in the 

determination of *T  with known R, *U  in (1). That 
is we want to know which tests might have led to 
the evaluation *U . This task is much harder to 
solve (in comparison to the direct problem) and we 

may be faced with infinitely many solutions or no 
solution at all. It is a classical problem in the 
theory of fuzzy relation equations [3,5,7]. In the 
case of solveability the maximal (in the sense of 
fuzzy inclusion) solution  1

€ € €,..., NT i i  is given by 
*€T R U   .                         (3) 

Where  * *

1
min kj jk j M

R U r u
 

    , and the well-
known -operation (Goedel implication) is defined 
as 

1 for ,
otherwise.

a b
a b

b


 


. 

There may be, however, a large number of 
minimal solutions [7] the calculation of which is 
not trivial for larger N (typical in test theory). 

 
Example 2. Let us consider the test with 10 

items and relation from Example 1. Now we want 
to find the assessment of  answers to items if we 
are given the UOK by 

*U  (0.75,0.75,0.75,1,0,0.75,1,1,0.25). We obtain 
the maximal solution 

€T  (0.75,0,0.75,1,0.25,0,0.25,0.75,0.75,0.75) 
and the four minimal solutions 

min
1T  (0.75,0,0.75,1,0,0,0,0,0,0),  
min

2T  (0.75,0,0,1,0,0,0,0.75,0,0), 
min

3T  (0,0,0.75,1,0,0,0,0,0.75,0),  
min

4T  (0,0,0,1,0,0,0,0.75,0.75,0). 
 
Inverse Problems with Restrictions 
 
Often the tester is not interested in the whole 

solution set of (1), but solutions with special 
properties are desired, as mentioned in Section 1. 
We distinguish two approa-ches: individual and 
global. 

 
Individual Approach 
In this case, we search at least one solution of 

(1) with T individual restrictions on the member 
values in each element jI  leading to the following 
task: Search *T  fulfilling 

* *U T R   
*T T T  ,                        (4) 

where ,T T  are fuzzy sets on T and "" means the 
inclusion of fuzzy sets.  

This situ-ation occurs for example if we want 
to get a solution *T  where certain items are 
surpressed and other items are to be in the solution 
set with high evaluation. 

In practice one is often faced with the problem 
to search for solutions with a special structure. 
Suppose, one has to determine a test 

 1 2, , , NT I I I   where item jI  takes part with 
probability jp , i.e. T is characterized by a 
probability distribution P. This restriction can be 
transformed into a fuzzy set *

PT  using 
corresponding methods [4,6]. Due to a certain 
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ambiguity in the choice of the transformation 
method and accounting that the jp  may be 
imprecise it seems to be more appropriate to 
include *

PT  in bounds, i.e. *
P PPT T T   and we are 

led to task (4). The following statement enables the 
determination of a solution of (4) in an efficient 
way. 

 
Statement 1. Denote the solution set of (4) by 

. Moreover let €T T T  with *€T R U   (see (3)). 
Then .iff T   

The proof follows from [9] where a more 
general situation is considered. 

 
Example 3. Let *U  given as in Example 2. 

Suppose, we are interested in item soluti-ons with 
evaluations of at least 0.5 for items 1 4 8 9, , ,I I I I . 
Items 2 7 10, ,I I I  are irrelevant and items 3 5 6, ,I I I  
should be excluded from consideration. This leads 
the restrictions 

(0.5,0,0,0.5,0,0,0,0.5,0.5,0)T  ,
(1,1,0,1,0,0,1,1,1,1)T  . One sees that 
(0.75,0,0,1,0,0,0.25,0.75,0.75,0.75)T   fulfills the 

restrictions and it is a solution,  because 
min

2
€T T T  . 

 
Global Approach 
It may be of interest to globally confine the 

memberships of *T  to a given (crisp) sub-set 
[0,1] . This situation is typical when Boolean 

solutions are desired  {0,1} or solutions where 
the membership of each item i should be below a 
level or above another one 

    0, ,1 with 0 1     . Formally this 
means that we search a *T  with 

* *U T R  ,                          (5) 
*
ji   for j = 1,...,N. 

For the analysis of (5) we apply results given 
in [1]. Therefore define a function : [0,1] [0,1]   
by 

( ) sup
b
b a

a b



  .                      (6) 

 
Remark 1.  
a) For {0,1}  (Boolean case) we obtain 

1 for 1,
( )

0 otherwise.
a

a


 


 

b) For    0, ,1     as above we have 
for ,

( )
otherwise.

a a
a


 

 

A solution of (5) can be found by the 
following 

 
Statement 2. Denote the solution set of (5) by 

  and let  be closed. Set  €T T


 (i.e.   
applied elementwise). Then    iff T 


. 

Example 4. Suppose *U  to be like in Exam-
ple 2. We want to determine a solution with 
evaluations not lower than 0.5. Otherwise we ex-
clude the item from further consideration. That is, 

   0 0.5,1  . A solution fulfilling the 
constraints is 

(0.75,0,0.75,1,0,0,0,0.75,0.75,0.75)T 


, and 
obviously min

1
€T T T 


. 

 
Conclusion 

 
The proposed approach of analysis and the 

formation of tests based on fuzzy relations opens 
up prospects for the automation of test generation 
based on the matrix elements of knowledge 
regarding the relationship and bank of items. 
Taking into account that in real test systems the 
item bank may contain hundreds of items, the 
problem of determining an optimal set of items is 
important. However, the demand for exact solv-
ability may be too restrictive (i.e.  or  may be 
empty). Then one might search for approximative 
solutions (e.g. by transforming *U  into an interval-
valued fuzzy set, see [8]). This will be the topic of 
future research. 
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Introduction. Steam production is the basic 
process for the generation of electrical energy in 
nuclear or coal power plants.  By means of the 
flow type, the boiling process can be distinguished 
between pool boiling and flow boiling. Pool 
boiling occurs in free flow. In a forced flow the 
evaporation process is called flow boiling. 
Undercooled boiling is not investigated. The 
medium has reached its saturation temperature. 

The boiling process can be subdivided in three 
stable stages: 

– convective boiling, 
– nucleate boiling 
– and critical boiling states (film boiling or 

dryout of the heated surfaces). 
The transitions between the boiling stages are 

not sharp and they are determined by the wall 
superheat T. The wall superheat is the difference 
between the wall temperature TW and the 
saturation temperature of the fluid TS. The 
saturation temperature remains constant in the 
boiling process. The heat transfer is determined by 
the heat transfer coefficient . The correlations are 
shown in the following figure. The abscissa is the 
logarithmic temperature difference (TW-TS) and the 
ordinate shows the heat flux density. 

The boiling process begins with convective 
boiling. The wall temperature is only a few Kelvin 
above the saturation temperature. No or only very 
few bubbles are formed. The increase of the wall 
temperature increases the bubble formation and the 
convective boiling changes over to nucleate 
boiling. Point A marks the onset of nucleate 
boiling, ONB [1]. 

The bubbles form on cavities or scratches on 
the surface containing pre-existing gas/vapor 
nuclei. The rising bubbles mix the fluid and thus 
improve the heat transfer. This is demonstrated by 
the growing increase of the heat transfer 
coefficient. Further increase of the heat supply 
causes also an increase in bubble formation and the 
flow of fluid to the wall is lower. At a maximum 
heat flux density (point C, called the critical heat 
flux CHF) forms a closed vapor film restraining 
the heat transfer. This means that the transferred 
heat flow decreases, then reaches a minimum 
(Leidenfrost point) and increases. This behavior is 
achieved by setting the wall temperature. The 
evaporation process in nuclear or coal power plants 
is setting the heat flow. This means that due to the 
suddenly worsened heat transfer, the wall 
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Теплообмін у процесі кипінні залежить від цілої низки чинників (стадії кипіння, фізичних та геометри-
чних параметрів, змінних стану і умови обтікання). Всі варіанти засновані на емпіричних співвідношеннях, 
отриманих на базі  експериментальних даних, оскільки досі відсутня узагальнена теорія темплообміну. Із 
збільшенням перегріву стіни (Тw-Ts) випаровування змінюється від конвективного кипіння до ядерного, а 
відтак – до film-кипіння. Для розрахунку коефіцієнта тепловіддачі кожного типу кипіння існують окремі 
рівняння. Існує можливості враховувати невизначеність в динамічному моделюванні кипіння. Для цього 
була розроблена нечітка модель типу Такагі-Сугено, яка містить нечіткі переходи між стадіями кипіння. 

Ключові слова: процес кипіння, теплообмін, динамічне моделювання кипіння, нечітка модель Такагі-
Сугено. 

 
Теплообмен при кипении зависит от целого ряда факторов (стадии кипения, физических и геометри-

ческих параметров, переменных состояния и условия обтекания). Все варианты основаны на эмперических 
экспериментальных данных, так как до сих пор отсутствует общая теория теплообмена. С увеличением 
перегрева стены (Тw-Ts) испарение изменяется от конвективного кипения до ядерного, а затем до film-
кипения. Для расчета коэффициента теплоотдачи каждого типа кипения существуют отдельные уравне-
ния. Существует возможность учитывать существующую неопределенность в динамическом моделирова-
нии кипения. В связи с этим была разработана нечеткая модель типа Такаги-Сугено, включающая в себя 
нечеткие переходы между стадиями кипения. 

Ключевые слова: процесс кипения, теплообмен, динамическое моделирования кипения, нечеткая мо-
дель Такаги-Сугено.    

 
The heat transfer during boiling depends on a variety of factors (boiling stage, material parameters, 

geometrical parameters, state variables and flow conditions). All variations are based on empirical relationships 
gained from experimental data because there is still no comprehensive theory. With increasing wall superheat 
(Tw-Ts), the evaporation changes from convective boiling to nucleate boiling and then to film boiling. For each type 
of boiling, separate equations for the calculation of the heat transfer coefficient do exist. This paper presents 
possibilities to take account of the existing uncertainties in the dynamic simulation of boiling. For this reason a 
Takagi-Sugeno-fuzzy-model was developed which includes the fuzzy transitions between the boiling stages. 

Key words: the process of boiling, heat transfer, dynamic simulation of boiling, fuzzy model of Takagi 
Sugeno. 
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temperature increases drastically (dashed line from 
C to E) [2]. 

 
Mathematical description of the boiling 

process.  The describing variable for the modeling 
of the heat transfer is the heat transfer coefficient 
. For each boiling stage many formulas do exist 
which mostly are based on experimental data. 
Besides viscosity, thermal conductivity, density, 
thermal expansion coefficient and geometrical 
parameters the heat transfer depends on many 
influencing factors. During heat transfer with 
phase change, the number of variables is extended 
by enthalpy of vaporization, saturation 
temperature, vapor density and surface tension. 
Microstructure and material of the heating surface 
are relevant as well. The multitude of influencing 
factors and their complex interaction are the cause 
that no comprehensive theory could be developed 
yet. Thus, all mathematical calculations are based 
on empirical or semi-empirical relations [2]. 

 
Convective boiling 
The calculation of the heat transfer coefficient 

 is based on the equations for forced convective 
heat transfer [2]. 

 
Nucleate boiling 
The heat transfer coefficient for nucleate 

boiling is described by empirical models. The 
equation refers to a standard state with 0 and  
and considers the relative effects of wall roughness 
CW, the boiling pressure by F(p*) and n and the 
pipe diameter [2]. 

 
Critical boiling states 
Film boiling 
The heat transfer coefficient for film boiling is 

composed of the heat transfer coefficient L and 

S. The heat transfer coefficient L is determined 
by the heat conduction process through the vapor 
layer and S through the heat radiation process [2]. 
The explicit equation of Bromley's proximity for 
the technical area of interest is defined in [4]. 

Dryout 
The calculation of the heat transfer coefficient 

 is based on the equations for forced convective 
heat transfer [2].  

 
Takagi-Sugeno-Fuzzy-Model.  To model the 

fuzzy transition between the boiling stages, a 
Takagi-Sugeno fuzzy model is suitable.  The 
height of the wall superheat is the decision 
criterion, which boiling stage is present. For this 
reason it is fuzzified and T is defined as a 
linguistic variable (Figure 2), which consists of 
three membership functions "small", "medium" 
and "large". Convective boiling is definitely given 
if the wall superheat is located between 0 K and 7 
K ("small"), we speak of nucleate boiling , when 
T is between 20 K and 35 K ("medium") and 
critical boiling states starts at a high temperature of 
100K ("large"). The transition regions are 
modelled linearly. The data were taken from 
Figure 1. The decision which mechanism works of 
the critical boiling states is based on the critical 
vapor content. If the vapor content x is low, then it 
is film boiling, is it “high” then works the heat 
transfer mechanism dryout of the heating surface. 

 
The following rule base is derived: 
If T = "small" then   = convective boiling 
If T= “medium" then  = nucleate boiling 
If T = "large" and x = “low”  

then  = film boiling 
If T = "large" and x = “high”  

then  = film boiling         (1) 

 
Figure 1 – Explanation of the boiling stages based on the boiling curve of Nukiyama 

 



Наука і сучасні технології 
 

 138 ISSN 1993—9868.  Нафтогазова енергетика.  2012.  № 2(18)
 

Subsequently, the accumulation is performed 
to determine the resulting heat-transfer coefficient. 

 
Modeling a boiling process. To illustrate the 

methods / procedures developed, the following 
boiling process is applied (Figure 3). In an 
electrically heated thin-walled pipe is saturated 
water supplied and vaporized over the pipe length. 
The dynamic behavior is described by following 
simplified non-linear differential equation system 
(Assumption: the pressure is constant). 

 
pe, pa – Inlet- outlet pressure; 
,  – Inlet- outlet mass flow; 

he, ha – Inlet- outlet enthalpy; 
mW – Pipe mass; 

cW – Heat capacity of pipe wall; 
m – Mass of the medium; 
TW – Wall temperature; 

 – Electrical heat flux 
Figure 3 – Model for describing a boiling 

process 
 
Heat balance medium: 













 me

m
mem hM

dt
dh

h
qhV

h
qhVVq 2  

 mMWme TTAhM  2 .          (2) 

Heat balance pipe: 

 mMWei
W

Ww TTAQ
dt

dTcm   .    (3) 

The realization of the model equations is 
carried out with a computer algebra system. The 
heat flux density is given. After 10 seconds the 
heat flux density increases (Figure 4, left). At the 
beginning of the simulation, the fluid temperature 
is already at saturation temperature. This value 
remains constant throughout the boiling process. 
The simulation starts with the state of convective 
boiling. The heat transfer coefficient is low. For 
the first 10 seconds a steady state appears. The 
wall temperature is a few Kelvin above the 
saturation temperature. 

With increasing heat flux density the wall 
temperature rises. Due to the low heat transfer 
coefficient, the wall temperature initially rises 
steeply. With the onset of bubble production the 
water is getting mixed and the heat transfer 
improves. This means that the heat transfer 
coefficient increases and the wall temperature rises 
slower despite constantly increasing heat supply. 
The heat transfer to the water improves until the 
critical point is reached, so that the bubbles form a 
closed vapor film. The steam has considerably 
poorer heat transfer properties. That means for a 
given heat flux density, that the wall temperature 
(Figure 5) changes almost in a jump-like way and 
the process switches to stable film boiling. In right 
Figure 4 shows the heat flux over the wall 
superheat. When the critical heat flux is reached, 
then the wall superheat rises steeply. 

 
Summary and Outlook 

 
The article presents a possibility to take 

account of an aspect of model uncertainty. In a first 
step, the heat transfer coefficient for the dynamic 
simulation of boiling process is realized with a 
Takagi-Sugeno-fuzzy-model and integrated into 
the differential equation system. The dynamic 
simulation of the process example represents the 
process behavior realistically. 

To extend the model, the parameter 
uncertainties for the major variables (e.g. pressure, 
temperature) are considered as fuzzy and in the 
simulation. 

    
Figure 2 – Linguistic variable "wall superheat T" and “vapor mass fraction x” 
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Figure 5 – Temporal course of the prescribed heat flux (left) and qualitative trend of the heat flux 

over the wall superheat T (right) 
 

    
Figure 5 – Qualitative temporal course of the wall temperature, left) overview right) zoomed 

 
 


