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Poszensoaromocst npobremu npoexmysants MiHIMATbHA eHepeist YAPAGNiHH 05l 00HO20 KIACY OUHAMIYHUX
cucmem Takaei-Cyzeno y besnepepsnomy uaci. Poboma cnpsamoeana Ha GUKOHAHHS KOMYMAYIUHO20 3aKOHY O/l
niomooeni. IIpononosanuil nioxio sacHosanuil Ha npukyuni onmumarsnocmi benimana. Topisnsnus yimkux nepe-
MUKAHb [ HewimKux Mmooeell NposooumvCs 3 Memol OeMOHCmpayii e@exmusHoCmi Hewimkoi mooeni O
onmumizayii inoexcy eHepeemuunol egpexkmuerocmi. Ll epa 3 uimkumu i HEYIMKUMU YACMUHAMU OSL ONMUMI3AYLT
npobnemu 062080pIOEMbCSL AK MAUOYMHIL AKMYATbHULL HANPAMOK 0ociodicens. Bei pesynomamu npointocmpogani
HA NPUKTIAOAX HEeYIMKUX CUCHEM OOYUCTIOBATIbLHO20 THMENEKNY.

Kiro4oBi ciioBa: ympaBiiiHHS nepeMukaHHsM, Takari-CyreHo Mojeni, HediTKa JAWHAMIiYHA CHCTeMa, 1HICKC
MPOAYKTUBHOCTI, MiHIMi3alii eHeprii.

Paccmampusaromes npobnemvl nPOeKMUPOSaHUs MUHUMATBHASL IHEP2US YAPAGIEHUS Ol 00H020 KIACCa Ou-
Hamuyeckux cucmem Taxaeu-Cyeeno 6 HenpepvigHom epemenu. Paboma Hanpaeiena Ha GbINOIHEHUE KOMMYMAayu-
OHHO20 3aKOHA 071 noomoodenu. Tlpednazaemviti nooxo0 ochosan Ha npunyune onmumaiviocmu benimana. Cpas-
HeHue 4emKUX NepeKIOYeHUll U HeUemKUxX Mooeiell NPOGOOUMCs C Yeblo 0eMOHCMPayuL dPhekmusHocmu Heuem-
KOt MOOenu 05l ONMUMUSAYUL UHOEKCA IHEPeemuieckol dpgexmusHocmu. Oma uepa ¢ Yemkumu U Hewemxkumu
yacmamu 0isk onmumusayu npoodemvl 06Cyicoaemes Kaxk 6yoyujee aKmyaibHoe HanpasieHue uccieooéanuil. Bee
PE3VALIMAmbl NPOULTIOCMPUPOBAHBL HA NPUMEPAX. HEUEMKUX CUCTNEM GbIYUCTUMENbHO20 UHMELTEKMA .

KiroueBsie cnoBa: ympasieHue nepekirodeHuem, Takaru-CyreHo Moaesy, HedeTKas TUHAMHUYECKas CHCTeMa,
HHJIEKC MPOM3BOAUTEIBHOCTH, MUHUMH3AIIUHA SHEPTHH.

This paper deals with the problem of designing minimum-energy control for a class of Takagi-Sugeno
continuous-time dynamical systems. The work is focused on fulfillment of the switching law for submodels. The
proposed approach is based on Bellman’s principle of optimality. The comparison of crisp switching and fuzzy
models is conducted to demonstrate the effectiveness of the fuzzy model to optimize the energy efficiency index. The
different combination of crisp and fuzzy parts for the optimization problem is discussed as future topical trends of
studies. All results are illustrated with examples.

~ Keywords: switching control, Takagi-Sugeno model, fuzzy dynamic system, energy efficiency index, energy
minimization.

Introduction.  Implementation of the management methodologies in the implementation

principles of energy management at the enterprises
of Ukraine is a key element of the national
program to improve efficiency of the energy
industry.

The main elements that determine the
efficiency of the energy management system are
the institutional arrangements, facilities,
information technology, the availability of
necessary resources. Using of modern project

152 )

of the energy management system caused by the
innovative nature of the technical solutions, the
existing time and financial constraints, high risk,
and for quality requirements of the project [1, 2].
With the implementation of changes in the energy
sector at the regional level, there is a need for an
integrated approach to management, based on a
multi-project and program management.
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In order to formalize management processes
in the energy management are appropriate using of
standard 50001:2012 ISO "energy management
systems. Requirements with guidance for use.” [3].
Using of this standard will integrate the principles
of energy management as the management of the
organization and the project management, the
implementation of which the organization is
involved.

In spite of the fact that energy management
technical aspects (energy audit, application of
energy saving technologies et cetera) are underlaid,
efficiency of management projects in energy is
determined efficiency of management resources.
With the purpose of providing of viability of pro-
jects on the initial stage of planning it is necessary
to conduct the estimation of resource realizability
of project, expose requirements both to to material
and technical resources and to the command of
project (high-quality and quantitative composition
of command, necessary jurisdictions, functions of
necessity and presence of resources in a project).
In the case of multiproject management and
management the brief-case of projects it is
necessary to provide optimum allocation of re-
sources within the framework of pool of resources
of organization with the purpose of decline of risk
of origin of resource conflicts.

During realization of project a requirement in
the resources of certain kind is not permanent a
size, but changes during time.

Let x — is a resource of project, u — the
facilities, necessary for functioning of this resource
(expenses on the use, energy consumption et cetera
for financial resources and labour costs for human
capitals).

Then time-history of this resource can be
described differential equalization:

d
;’t‘zf(x,u) :

where u is managing influence (expenses, electric
power et cetera) which needs to be minimized for
period of time of implementation of project (from
0tot).

As a system is difficult, to describe it one
equalization is not always possible, and depending
on the state of kh (more precisely, from his place
on a phase plane), different equalizations are used.
Together they form the so-called commuted system
(switched system).

One of the modern directions in control sys-
tem theory is to investigate different complex and
hybrid systems, among them so-called switching
systems[1.2]. In such a system the dynamic, for
instance, of the continuous-time controlled proc-
ess is described with several differential equations
or differential inclusions like

X(t)e{fa (x(t)u(t))} , (1)

aed
where x(t) € R"is a state system,u(t) eR"is a
control and {fa R —>R"} is a set of

aeA
continuously differentiable functions,
parameterized by «in a suitable set A. Such

systems are used for description of a variety of
applications, including situations where a control is
generated among a number of subsystems[6].

The choosing of appropriate model usually
depends on a part (or a region) of state space in
which an object is staying or a model itself is a
control parameter. We consider in this paper the
case when a model is depended on a region of state
space in which state is staying. In this case we can

write A= A(x).
We can also formulate the optimization

problem, namely, the minimization of a cost func-
tion

J=J(x,%u) )
with restriction (1) and some initial and/or final
states

x(4,).x(t,) 3)

for finite or infinite time 7, of control.
The main objective of an optimal control is to
determine control signals u (t) for open systems or

u(x,)'c) for closed-loop systems that will cause

that a process (plant) will satisfy some physical
constraints (1) and at the same time extremize
(maximize or minimize) a chosen performance
criterion (a performance index or a cost function)
(2).Taking into account different types of
uncertainly there are many formulations of optimal
control problems, where (1),(2) or (3) can be
described using statistical or fuzzy models [7, §].

We consider here the case when model (1) is
fuzzy and an performance index is a crisp one. We
compare also the switching fuzzy model with the
crisp one in the sense of the value of the perform-
ance index as well.

Decomposition approach for energy
performance index minimization using Bellman
optimality principle

As a problem of optimization we consider the
energy-optimal control system, namely
1t
J=—\udt, 4
: j @
with the model of region rules
R1:if xis A thenx = f, (x,u),

R2:ifxis/\2then)'c=f2(x,u), (5)

RM :if xis A, thenx = f,, (x,u)

where A, are regions in the state space. In the crisp

case these regions are crisp sets, in a fuzzy case
they are the fuzzy sets. For crisp sets we use

M
UA =r",
i=1

Al.ﬂ/\j =,Vi# j. In the case of the fuzzy
model, the membership functions of linguistic
terms A, are designed under such limitation of

following restrictions
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M
normalization, namely z U, (x) =1,VxeR".

i=1

Giving the energy-optimal criteria we also
base on Bellman principle of optimality [6]
according to an optimal sequence of decisions in a
multistage decision process, the problem has the
property that whatever the initial state and
decisions are, the remaining decisions must
constitute an optimal policy with regard to the state
resulting from the first decisions. This means that
we could rewrite (4) as
Iy

1
J=—[wdt=J, +.+J, =
2 0 H

4 ' t t (6)
1 17, 1r,
=—ju2dt+—ju dt+...+—ju dt,
210 2{I ZtH

where each part of performance index is
minimized for appropriated model (1) or (5) from

a; € A(x). Giving models in each part of control

time the optimization problem in this case can be
formulated as finding the times from the set

{tl,...,tH} that jointly minimize the performance
index (6) with solving the optimization problem
for each model «; € A(x). Such decomposition

approach allows considering the whole opti-
mization problem as a set of separate optimization
problems with additional transversality conditions
between models. These conditions depends on type
of solution: is the trajectory inside one time

interval [tl.,tm] intersect or does not intersect the

border of space appropriate interval A].. Most of

authors on the topic of switching control does the
strict restrictions and does not consider such
intersections [6, 8]. Moreover, there are not
separate investigations on energy performance
index minimization for switching systems using
decomposition approach.

We compare in this paper two switching
models, namely the crisp model and fuzzy Takagi-
Sugeno one for minimization of functional (2).For
the sake of simplicity the decomposition approach
is illustrated on examples of first order differential
equations.

Energy-optimal  control for
switching crisp model

Let us consider a following optimization
problem of a crisp switching system (5) that is
consisted of models R1 and R2:

R1:if x>0.5thenx =u,

R2:if x<0.5thenx =2u 2
with the performance index (4) and initial and final
conditions x(0)=2,x(2)=-2 correspondingly,
where #,=0,t, =2. The initial value x(0)=2
belongs to condition x>0.5 that is why we use
model R1 in the first part of time from 0 to 7, <¢,.

system

_
()]
“)

The final value x(2)=-2 belongs to condition
x < 0.5 and we use model R2 the rest part of time
from#, to 2. That is clear that we have x(7,)=0.5.

According to principle of optimality (6) we can
write
17 14 17
_ 2 — - 2 - 2
J—2Iu dt=J,+J, 2ju dt+2!u dt,

0 0
17
with partial optimization problems J, =Eju2dt
0

2
for model f(x,u)=u and J, :%Juzdz for the

model £, (x,u) =2u. On each piece of trajectory
we solve the separate optimization problem J, and
J, with the appropriate model from (7). In such a
case the whole optimization problem could be

formulated as finding the time ¢ <2of the

switching of the control. Let us solve this task
now.

Case 1. Let x>0.5, te[0,1],
x(0)=2,x()=05. We solve here the
optimization problem of minimization

J, =%J.u2dt with the plant model X=u using
variation approach:

1 4 1 4 4

Jy == [wdt==[#dt= [V (x,%)dt,

2 0 2 0 0

where
IR
V(x,x) =§x2 . (8)

The necessary condition to minimize (8) is the
Euler-Lagrange equation [8]

ov dov

=0 ©)
ox dt Ox

that gives the optimal solution
x(t)=Ct+C,. (10)

From initial and final conditions we can find
the constants in (10), the optimal control and the

. 1.5
performance index C,=2,Ci=——,
t]
1.5 1115 1125
u(t) =——, J, = —I—zdt =———. Here
t] 2 0 tl tl
time £, is to be found.

Case 2. Let x<05, r€[1,2],
x(4,)=05,x(2)=-2. We solve here the
optimization problem of minimization

]
J, =%J.u2dt with the plant model x =2u using
0

variation approach

\
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1 2 1 2 2
Jy==[wldt == [4xdt =V (x,%)dt,
2 f 2 f f
where

V(x,x)=2%". (11)

The necessary condition to minimize (11) is
the Euler-Lagrange equation (9) that gives the

optimal solution
x(t)=Ci+C,. (12)

From initial and final conditions we can find
the constants in (12), the optimal control and the

. 2. 2t +1
performance index C,= —5, = )
-2 4, -2
1.2 1 1.25 0.78125
Aﬂz——i,kz—j > dr=- :
f -2 25 (1,-2) )

Thus, we have the following performance
index as a function from ¢,

1% 1.125 0.78125
J(t])zzjuzdt=J1+J2= ==
1 1

0

9

t,€(0,2) . (13)
To find the minimal value of the performance
index (13) is necessary to solve the equation

78125 1.12
6—J=0. We have for (13) 0.78 f— 25=
ar, (L-2F &
The solutions are 7 ={1.(09),12.0}. Because

t,€(0,2) we have the moment of switching

t,=1.(09). The value of the performance index
1125078125
f t, -2

J = ~1.891.

Energy-optimal  control

switching fuzzy model

Let us consider the energy optimization
problem of a fuzzy switching system (5) that is
consisted of models R1 and R2:

Rl:if xis L, thenx = u, 14
R2:if xis L, thenx =2u (14
with the performance index (4) and initial and final
values x(0)=2,x(2)=-2.
Let L,,L, be the linguistic variables with
membership functions

system for

Lif x<0,
py, (x)=91-x,if 0<x <1, (15)
0,if x>1

According to the principle of optimality (6)
we can write
1 2
J==[wdt=1J+J,+J, =
2 0

L 16)
= —juzdt +—Iu2dt + —Iu2dt
2 0 2t, 21‘2

. o 15
with partial optimization problems J, = Ejuzdt
0
o)
for model f,(x,u)=u, J, = %Juzdt for the model
4

2
fz(x,u)zx-u+(1—x)-2u and J, :%Juzdt for

the model f, (x,u) =2u.
The model f,(x,u)=x-u+(1-x)-2u arises

from Takagi-Sugeno inference engine
X)-u+ X)-u
fo(xu)= A, (%) i, () with limitation of
My, (X) + 4, (x)
normalization.

On each piece of the trajectory we solve the
separate optimization problem J,, J,and J; with

the appropriate model from (14). In such a case
the whole optimization problem could be

formulated as finding the time ¢ <7, <2 of

switching of the control. Let us solve this task
now.

Case 1. Let x>1,te[0,1,],
x(0)=2,x(7,)=1. We solve here the optimization
problem of minimization J, = Ejuzdt with the

0

plant model X = u using variational approach:

1 Ll 1 Ll ) Ll )

J, z—qudt z—fxzdt = IV(x,x)dt,

2 0 2 0 0
where
(17)
The necessary condition to minimize (17) is

the Euler-Lagrange equation (9) that gives the
optimal solution

V(x,ic)z%fcz.

x(t)=Ct+C,. (18)

From initial and final conditions we can find
the constants in (12), the optimal control and the
performance index

1 1
C,=2,C=——,u(t)=—,
) = (¢) .

11 1
s=tila-t
208 2t,

Case 2. Let O<x<l,re(1.t,),
x(t,) = l,x(tz) =0. We solve here the
optimization problem of minimization

1%
J, = ) J. udt with plant model
4

X=x-u+ (1 - x) -2u using variation approach:

[y
N
N
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Figure 1 — Optimal trajectory for the fuzzy model (14) and the crisp model (7)

A3

-2
X

2(2-x)’

condition to minimize (19) is the Euler-Lagrange
equation (9) %* + 2% — x - X = 0 whence

x(t)=Cy-e" 42 (20)

From initial and final conditions we can find

the constants in (20), the optimal control and the
performance index:

di = jV x,%)dt, (19)

where The

V(x,fc) = necessary

In2 -2 In2
C = __—= -
Y-t . 2,2 u(?) -t
e 2 1
1 ] (n2)" ~ (n2)
? 23 (6, -1,) 2(t,-1)
Case 3. Let x<0,1€[t,,2],
x(tz) = 0,x(2) =-2. We solve here the
optimization problem of minimization

:—J *dt with the plant model X =2u using
Varlatlonal approach
2 .2 2
J == [uldt == [Zdt = [V (x,%)dt,
: 2! 2! 4 J (x:%)

where
N
V(x,x)=§x2 . (21)
The necessary condition to minimize (21) is
the Euler-Lagrange equation (9) that gives the
optimal solution

x(t)=Cst+C;. (22)

—
)]
(@)

From initial and final conditions we can find
the constants in (20), the optimal control and the
performance index:

2 2t
C,=—"—, C =2
t, -2

1 I 1
2(2-1)
Thus, we have the following performance
index as a function from ¢,,7,
J(t.t,)=J, +J, +Jy =
1 (m2) 1
26, 2(,-1) 2(2-1,)
Let us find the minimal value of the function

(23)

(23), namely solve the following system: 2—J= 0,
t]

2—2:0. It leads for (23) to the system of
equations
n2)° 1
1 (ln2)2
(,-2) (4-1,)

Only one solution can be approved according
to conditions #,,?, € [0,2],t] <t,, namely:
2 2(In2+1
t = ~0.743,t, :g
In2+2 In2+2
So we have J(t,,t2) ~1.813.

Ilustrate the optimal trajectories for crisp and
fuzzy models (fig.1).

~1.257.

(
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Comparison of the crisp and fuzzy models
It is interesting that the optimal fuzzy system
model gives less value of the performance index

then the crisp model, J,. <J.. Let te[t,,tz],

where the interval [t,,tz] is an interval where the
fuzzy model works. It is enough to calculate the
performance index in interval [t,,tz]. Really, out
of this boundary, namely on the time segments
[0,,].[1,,2] we use the same models and the same
values of performance indexes on these segments
for crisp and fuzzy models. Let ¢, e[t,,tz] is a

moment of switching of the crisp model (fig. 2). So
we have switching times

2(In2+1
2 ~0.743,1, w
In2+2 In2+2
fuzzy model and ¢, = 1.(09) for crisp one.

t = ~1.257 for the

i1 i 15

Figure 2 — Difference between the optimal
trajectories of crisp and fuzzy models

Let us consider the variation of performance
indexes as a function of 7 :

A (t)=J,-J.=
2 (In2)’ 1”1.52 1.25°
f s a2
4 2
(2 15 125°
2(,-1) & (t.=1) (zc—2)2(t2 )

1
That is AJ(1.(09))=-0.444,s0 J, <J,.

Conclusion

In this paper we illustrate the interesting
phenomena of advantage of the fuzzy switching
model and the crisp one in optimization problem
with minimum energy criteria. We show also that
such a problem for the switching model can be
transformed due to Bellman principle of optimality
to the problem of switching time optimization.

This article opens also the wide ways for investiga-
tion of optimization problems for different
combinations of type of optimization elements —
crisp, fuzzy Takagi-Sugeno, fuzzy Mamdani,
statistical models for representing of performance
indexes, plants, initial and transversality conditions
so on. We hope to solve these tasks in future step-
by-step.
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